Using the CUnit Class

It is the responsibility of each simulation object to create a “Unit” object. Such an object handles the setting up and processing of unit-level concepts. This includes such things as which persons are in which units, how many units there are in the household, the type of unit, and looping through all persons in the unit. If the concepts involved in a particular simulation’s definition of “unit” are simple, the simulation may be able to simply create a “Unit” object from the base class CUnit (see SSI for an example). If the concepts are more complex, the simulation may need to derive a class from the base class (see FoodStamps for an example). Regardless of where the object comes from, it should be created in the constructor of the simulation object as follows:

pUnit = new CUnit (this, pHouse);

where CUnit is the name of the unit class being used (in this example, the base class), and pHouse is a pointer to the CHousehold class

For most simulations, the most complicated job of the “Unit” object is determining which persons belong in which units. The base-class version of CUnit can break a household into any of the following pre-defined unit types (given by the member variable UnitType):

1=ONE_UNIT_PER_HOUSEHOLD

2=ONE_UNIT_PER_PERSON

3=ONE_UNIT_PER_COUPLE

4=ONE_UNIT_PER_FAMILY

5=ONE_UNIT_PER_FAMILY_WITH_SUBFAMILIES

The variable UnitType is (be default) set by the frame in CProcess::CreateSimModules to the value of the field UnitType of the RunDetails table (which the user is not allowed to change). Alternatively, the UnitType can be set in the Initialize function of the simulation object. For example:

void CMySimulationSim::Initialize () {

 UnitType = CUnit::ONE_UNIT_PER_FAMILY;

 CFuncSim::Initialize();

}

If a simulation needs to create its own custom-defined unit, the original design called for the simulation to override the function SelectUnits (see AlienPrep for an example). However, in most simulations this was done by overriding the function GetFirstUnit (see FoodStamps, FederalTax, and Poverty for examples). Regardless of where the composition of units is handled, the results must be saved in the member variable UnitArray. This array has an element for each person in the household. The value of that element is the number(0-based) of the unit that person belongs to.

Once UnitArray is set up properly, the frame handles looping through the units in a household, thereby freeing the simulation object to just focus on the processing needed for a single unit. The simulation object can loop through unit members by using the member functions GetFirstPerson and GetNextPerson, which will set the “current” person to the appropriate person for the current unit. A typical use of these functions is as follows:

pUnit->GetFirstPerson();

do {

code to process a unit member

} while (pUnit->GetNextPerson());

where pUnit points to the simulation’s CUnit (or CUNIT-derived) object. If the simulation needs to set the current person to a particular person, the function SetPerson(PNum) can be called. This sets the current person to person number PNum (which is a 0-based index to a person within a household). Warning: The programmer should be aware that SetPerson does not check that person PNum is actually in the current unit!

Usually, the simulation does not need to know what unit is being processed (since generally all units are treated the same). However, there are times when the simulation needs to do some special work when it first starts processing a new household (e.g. initializing household-level variables). Determining if the current unit is the first in a household (and therefore that the processing of a new household has begun) can be done as follows:

If (GetUnitNum() == 0);

Since the numbering of units is 0-based, if the above condition is true, the simulation can proceed with any special work needed when starting a new household.

Some additional functions available in the CUnit class are:

GetPersonNum() – (int) Returns the position of the person to whom the person pointer is currently pointing.

GetNumberOfPersons (int UNum) – (int) Returns the number of persons in unit UNum.

SelectUnits (UnitTypeTag Type) – (void) Sets unit type, e.g., one unit per family, as specified by the ONE_UNIT_PER_FAMILY UnitTypeTag.

GetFirstUnit() – (BOOL) Returns true if pointer is set to the first unit in a household.

GetNextUnit() – (BOOL) Returns TRUE as long as there is another unit in the household to which the pointer is pointing; returns false when no other units are found.

GetNumberOfUnits() – (int) Returns the number of units in a household.

SeparatePerson(int pNum) – (void) Removes the person specified by pNum (PersonID-1) from the current unit and creates a separate unit for that person. This function may be used for custom unit definitions within a simulation module.

For using CUnit member functions not described here, see the documentation in simulate.h
